Quantamental Investing in the Age of Accelerating AI

Quantamental investing—a strategy that melds traditional fundamental analysis with data-intensive quantitative methods—has surged in popularity over the past decade. Today, it stands on the cusp of a transformative era: advanced AI models, once prohibitively expensive, are becoming more capable, affordable, and widespread. This technological leap is poised to redefine how we identify and exploit market…


Quantamental investing—a strategy that melds traditional fundamental analysis with data-intensive quantitative methods—has surged in popularity over the past decade. Today, it stands on the cusp of a transformative era: advanced AI models, once prohibitively expensive, are becoming more capable, affordable, and widespread. This technological leap is poised to redefine how we identify and exploit market inefficiencies. Imagine a team of tireless, ever-alert junior analysts who can analyze millions of corporate filings, news articles, and social media chatter in seconds—that’s essentially what these next-generation AI systems offer.

The AI Surge

While chatbots capable of drafting essays or writing code have become commonplace, the real revolution lies in sophisticated reasoning models such as DeepSeek-R1 or o1. Developed by the Chinese AI firm DeepSeek, DeepSeek-R1 is an open-source AI model that rivals OpenAI’s o1 in analytical performance, all at a fraction of the cost.  This model operates tirelessly, delivering near human-level analytical capabilities in areas such as science and document analysis without the need for rest. Although early critics point to occasional errors or “hallucinations,” each new AI iteration arrives faster, cheaper, and smarter than its predecessor.

Skeptics rightly argue that  current AI struggles to handle real-world complexity or that we will soon exhaust available data. It seems as if many obstacles signal an impending “AI winter.” Yet, history consistently proves these doubts wrong. Current models may occasionally err—such as mislabeling images or stumbling over certain puzzles—but these issues typically diminish with each upgrade. Regarding the so-called “data wall,” tools such as the Genesis physics engine can now simulate endless real-world scenarios, generating fresh training data on demand.  We may be far from reaching any true data limitations in other areas as well.

Lessons from Chess

The evolution of computer chess offers a cautionary tale. Two decades ago, enthusiasts critiqued engine-versus-engine matches with comments like, “Look at that weak bishop move! Totally clueless!” Over time, it became evident that these engines operated on a level of strategic depth beyond human comprehension. A similar pattern is emerging in finance: as AI models surpass human analysts in some capacities, traditional critiques begin to lose their grounding.

Humans often pride themselves on intangible qualities such as intuition and gut feeling. However, top chess engines now exhibit strategic depths that outstrip any grandmaster’s. In financial analysis, AI may soon unearth insights about market anomalies, correlations, or risk exposures that even the sharpest human analyst might overlook.

Alignment: The Ape-Human Analogy

With progress comes a significant concern: alignment. If in the future an advanced AI is to humans what humans are to apes, how could an ape society truly control or steer humans? Could it shape our motivations or prevent actions beyond their understanding? This analogy applies to AI alignment: as these systems may surpass us in certain cognitive tasks in the future, how do we ensure they remain beneficial?

Even if we reduce errors by 99.9%, that 0.1% “critical error” moment could be catastrophic if we entrust AI with our financial infrastructure. Imagine a model misinterpreting data and executing trades that destabilize entire financial markets. This risk isn’t a call to halt progress, but a reminder that these models require robust oversight, external checks, and well-designed fallback mechanisms.

Implications for Quantamental Investing

For quantamental investors, the potential benefits are immense. Advanced AI can ingest vast amounts of corporate filings, news articles, and social media chatter in real time, extracting subtle sentiment signals that inform fundamental valuations. Instead of manually reading a handful of corporate annual reports, you could deploy a system that scans entire sectors, highlights anomalies, and suggests plausible narratives behind price movements.

Moreover, machine reasoning can detect emergent patterns that might elude classical quant models or even seasoned analysts. For instance, it might recognize that a specific supply chain disruption consistently triggers a hidden price reaction in an unrelated sector. Or it could identify a pattern where a drop in one commodity’s price sets off currency fluctuations, presenting a brief arbitrage opportunity to take a risk-free profit. A well-aligned AI agent can piece these clues together faster than any human.

Integration is key. Most investors still value the human touch for significant decisions. Think of AI as an always-on idea generator, augmenting your best analysts, not replacing them. Humans excel at nuance, creative leaps, and trusting their instincts in ambiguous scenarios—at least for now.

Concluding Thoughts

We are living in an era where AI can plausibly outperform legions of junior analysts while consuming data on a scale unthinkable a decade ago. The cost of accessing this power decreases with each iteration. Yes, we still face risks, including the critical alignment challenge: how do we keep a super-smart system from going off the rails if it’s operating at a level we struggle to comprehend

These challenges shouldn’t overshadow the transformative benefits for investors. While critics rightfully continue to highlight many shortfalls, it’s a losing game as progress marches on. The real question for fund managers and corporate leaders isn’t whether the current AI model is perfect, but whether they can afford not to incorporate these evolving capabilities into their strategies. After all, if you had told chess grandmasters thirty years ago that a household PC would soon crush them at their own game, they might have laughed—until it happened.

A balanced approach is best: maintain a healthy dose of caution regarding alignment pitfalls, but embrace the enormous potential to revolutionize everything from portfolio optimization to risk management. The future of quantamental investing likely lies in a partnership between human wisdom and supercharged AI, each covering the other’s blind spots. And if apes can’t steer us humans, let’s make sure we create a more effective strategy for aligning our advanced AI. This way, we can all relax while the AI handles the complex financial tasks.

Disclaimer: This article provides general insights only and does not constitute financial or investment advice.

Matthias Buehlmaier
Associate Professor of Teaching in Finance, Principal Lecturer in Finance
BBA(IBGM) Program Director at HKU Business School
(This article was also published in the “FT Chinese Column” on FTChinese.com on March 6, 2025.)

Translation

AI加速時代下的量化基本面投資


量化基本面投資——這一融合傳統基本面分析與數據密集型量化方法的策略——在過去十年間迅速普及。 如今,該領域正站在變革的臨界點:曾經成本高昂的先進AI模型,正變得更高效、更低成本、更普及。 此方面的技術躍進將重新定義我們如何識別和利用市場低效的方式。 試想像一下,一支不知疲倦、時刻警覺的初級分析師團隊,能在數秒內分析數百萬份公司檔、新聞報導和社交媒體數據——這正是新一代AI系統提供的核心能力。

AI技術浪潮


儘管能撰寫論文或編寫代碼的聊天機器人已屢見不鮮,但真正的革命在於DeepSeek-R1、o1等複雜推理模型。 由中國AI公司深度求索(DeepSeek)開發的DeepSeek-R1開源模型,以極低成本實現了與OpenAI的o1系統相匹敵的分析性能。 該模型在無需休息的情況下,在科研、文檔分析等領域展現出接近人類水準的分析能力。 儘管早期版本偶有錯誤,或存在「幻覺」(生成虛構內容)的問題,但每次反覆運算都變得更快、更低成本和更高智慧。

質疑者正確指出當前AI處理現實複雜性的不足,或認為我們將很快耗盡可用的數據,這些障礙似乎預示“AI寒冬”將至。 然而,回顧AI的發展,歷史反覆證明這些擔憂都是多慮。 現有的AI模型可能在圖像識別、複雜問題處理等方面偶有錯誤,但這些問題往往隨升級消除。 針對「數據牆」的問題,Genesis物理引擎等工具已能夠類比多樣化的現實場景,並依據實際需求生成新的訓練數據,看來我們在其他領域距離耗盡數據仍相距尚遠。

國際象棋的啟示


計算機國際象棋的進化史具有警示意義。 二十年前,在引擎對弈比賽剛剛興起時,一些象棋愛好者曾批評:“看! 那個象的走法實在令人費解! “然而,隨著時間的推移,人們逐漸意識到這些引擎運作的戰略深度已超出人類所能理解。 金融領域正出現類似模式:當AI在某些方面超越人類分析師后,傳統的批評聲音將逐漸難以立足。

人類一直以直覺、洞察力等無形優勢為傲。 然而,當今頂尖國際象棋引擎顯示,其戰略精妙程度已超越任何一位人類象棋大師。 在金融分析領域中,AI模型或將精準發現市場異常、識別複雜的相關性模式或揭示潛在的風險敞口等,這些洞見即便是最優秀的人類分析師也可能忽略。

對齊問題:AI主導時代的控制權挑戰


隨著AI技術迅速發展,對齊的議題愈趨重要。 若未來先進AI與人類智慧的差距,如同人類與其他智商較低物種的差距,智商較低的物種如何能真正控制或引導人類? 它能塑造我們的動機或阻止超出其理解的行為嗎? 這個隱喻適用於AI對齊:當系統未來在某些認知任務上超越人類時,我們又如何確保其與人類的根本利益始終保持一致?

儘管我們能將錯誤率降低99.9%,如果將金融基礎設施交由AI管理,那剩餘0.1%的“關鍵錯誤”仍可能引發災難性後果。 一旦某個AI模型錯誤解讀數據並執行交易操作,極有可能引發整個金融市場的動蕩。 然而,這種潛在風險並不代表我們應該叫停技術進步,而是提醒我們必須為這些AI模型配備強有力的監督、外部校驗以及精心設計的備用方案。

對量化基本面投資的啟示


AI技術的崛起為量化基本面投資者帶來巨大的潛在收益。 先進的AI技術能夠實時處理海量資訊,包括公司文檔、新聞報導以及社交媒體討論,提取影響基本面估值的細微情緒信號。 投資者毋須再耗費大量時間查閱公司年報和財務數據,只需靠系統掃描整個行業,即可識別異常現象,並推測價格波動背後的邏輯。

機器推理還能發現傳統量化模型甚至資深分析師可能忽略的新興模式。 例如,它可能發現特定供應鏈中與看似無關行業之間所引發的價格波動,或者發現某種大宗商品價格下跌如何引發貨幣市場波動,從而幫助投資者捕捉轉瞬即逝的無風險套利機會。 一個訓練有素的AI系統能夠以遠超人類的速度,為投資者整合這些分散的市場資訊。

然而,人機協同才是未來的關鍵。 大多數投資者仍然重視人類在重大決策的所發揮的獨特價值。 我們應將AI視為靈感生成器,輔助而非取代頂尖的人類分析師。 至少在當下,人類仍擅長處理模糊情境中的細微差異、創造性跳躍和直覺判斷。

結論


我們正處在一個劃時代的轉捩點:AI在工作能力方面不僅能夠超越眾多初級分析師,其數據處理規模是十年前難以想像的。 隨著每次技術的反覆運算,獲取這種能力的成本持續下降。 可是,風險仍然存在,尤其是人機對齊的問題:如果超級智慧系統在我們難以理解的層面上運作,我們又能如何防止它失控?

儘管人機對齊等挑戰尚未解決,但投資者不應忽視此變革所帶來的好處。 批評者正確地指出了現時AI模型的許多局限,然而隨著技術不斷進步,他們最終難以在這場爭論獲勝。 基金經理和企業領導者的關鍵問題不是當前AI技術是否完美,而是在戰略層面上,他們能否承受不採用這些先進技術的代價。 試想想在三十年前,如果有人告訴國際象棋大師們,一台家用電腦很快就能在棋盤上擊敗他們,他們很可能會嗤之以鼻,直到這天的到來。

最佳的方法是在謹慎與進取之間尋求平衡:既要對潛在風險保持警惕,又要擁抱從投資組合優化到風險管理的革命性變革。 量化基本面投資的未來,很可能在於人類智慧與先進AI的深度融合,進行優勢互補。 我們必須創造出更完善的策略來確保先進AI與人類價值觀的對齊。 只有這樣,我們才能安心地將複雜的金融決策交給AI系統。

高德祿(Matthias Buehlmaier)

港大經管學院金融學教學副教授、金融學首席講師、工商管理學學士(國際商業及環球管理)課程總監


(本文同時於二零二五年三月六日載於《FT中文網》「明德商論」專欄)